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Abstract. A semi-continuous kinetic approach to a four-component gas mixture undergoing
elastic collisions as well as bimolecular chemical reactions is presented. General mass ratios of the
four species are allowed for. Conservation laws as well as an H-theorem are established. Numerical
solutions to simple spatially homogeneous test cases are provided.

1. Introduction

In the study of chemical reactions, gas kinetic approaches based on Boltzmann-like
equations [1] have a long tradition. First investigations in this field were made by Prigogine and
co-workers [2], who considered the Boltzmann equation for a dilute gas undergoing the reaction
A + A → products. The appropriate microreversibility conditions linking endothermic and
exothermic cross sections have been discussed in [3]. In [4], the Chapman–Enskog method was
applied for the evaluation of chemical reaction rates. Later on, Grad’s method was used [5] for
the calculation of reaction rates and transport coefficients. A short summary of the development
up to 1990 can be found in [6]. Quite recently, however, a rigorous H-theorem for the kinetic
equations describing the evolution of the reacting gas mixture has been derived in [7] and [8].
The formalism of the latter work includes, in addition, internal energy levels of the gas particles
as well as the interaction with a photon field.

This paper presents a discretization of the model analysed by Rossani and Spiga [7]. By
generalizing the approach of Preziosi and Longo [9], semi-continuous kinetic equations for a
mixture of four chemically reacting gases are provided and investigated. From a technical point
of view, the major new aspect as compared to the model presented in [10] is the introduction of
different masses of the involved species. This complicates the expressions for the conservation
of momentum and energy. For this reason, discrete velocity models [11] for chemically reacting
gas mixtures have not yet been established. In semi-continuous models, only the speed variable
is discretized. This yields a higher flexibility of the scheme and allows one to deal with arbitrary
mass ratios. To this end, it is necessary to generalize the original discretization procedure [9]
by introducing a separate set of allowed speeds for each species.

The major advantage of the semi-continuous kinetic equations as compared to the scalar
formulation of the Boltzmann equation [12, 13] resides in the capability of the former to treat
spatially dependent problems. This can be done by expanding the distribution functions in
terms of spherical harmonics [14].
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The paper is organized as follows. After stating the continuous kinetic equations
in section 2, the semi-continuous kinetic model is established in section 3. The semi-
continuous conservation laws as well as an H-theorem are discussed. In section 4, the spatially
homogeneous equations are provided by resorting to a P0 approximation. Finally, in section 5
some numerical results on the evolution of the distribution functions under the impact of the
chemical reaction are discussed.

In the rest of this paper, we will denote the four gas species by A, B, C and D, respectively,
whereas the letters N and M can stand for all of the four species.

2. Continuous kinetic equations

The kinetic description of the four-component gas mixture is formulated in terms of the
distribution functions f N(v,x, t) for each species N = A, B, C, D depending on velocity v,
space x and time t . The evolution of the distribution functions is affected by elastic binary
collisions (N + M � N + M) as well as chemical reactions

A + B � C + D. (1)

During the reactions, kinetic energy is transferred to internal energy. Denoting the internal
energy of N by EN , the difference in internal energy due to stronger chemical bonds of C and
D compared to A and B is given by �E = EC + ED − EA − EB > 0.

After a polar decomposition of the momentum space [9], for any binary collision

N + M � N ′ + M ′ (2)

the conservation of mass M , total energy E and momentum R can be written as

M = m + m∗ = m′ + m′∗ (3)

E = p2/(2m) + p2
∗/(2m∗) = p′2/(2m′) + p′2∗ /(2m

′
∗)±�E (4)

R = pΩ̂ + p∗Ω̂∗ = p′Ω̂′ + p′∗Ω̂
′
∗ (5)

where m,m∗,m′ and m′∗ stand for the masses of N,M,N ′ and M ′, respectively. Equivalently,
p, p∗, . . . denote the moduli and Ω̂, Ω̂∗, . . . the direction of the momenta. Primed symbols
generally refer to post-collisional quantities.

The integro-differential equations [7] governing the evolution of the phase densities f N

are of the form

∂f N

∂t
+ v · ∂f

N

∂x
=

∑
M=A,B,C,D

JNM + J N (6)

where the term JNM describes elastic binary collisions N + M � N + M and J N contains
the impact of the chemical reaction on the evolution of species N . By decomposing the post-
collisional relative velocity as g′ = g′n̂′, |n̂′| = 1, the elastic collision terms can be written
as

JNM =
∫

R3
dv∗

∫
S2

dn̂′ gσNM(g, γ )[f N(v′)f M(v′∗)− f N(v)f M(v∗)] (7)

with the cross section σNM depending on the relative speed g and the cosine γ = cosα = n̂·n̂′
of the angle of deflection α. The post-collisional velocities are given by

v′ = 1

M
(R− gmM n̂′) and v′∗ =

1

M
(R + gmN n̂′). (8)
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For the reactive collisions, we introduce the speeds gNM via g2
NM = 2�E/µNM , where

µNM = mNmM/M represents the reduced mass. Then the relative speeds after a reactive
collision read

g− =
√
µAB

µCD
(g2 − g2

AB) and g+ =
√
µCD

µAB
(g2 + g2

CD) (9)

where g represents the relative speed before collision. The speed g− refers to the endothermic
(→) and g+ to the exothermic (←) direction of the chemical reaction, respectively. Of course,
g′ = g for elastic collisions. The terms accounting for reactive collisions (2) with the cross
section σN ′M ′

NM (g, γ ) read

J N =
∫

R3
dv∗

∫
S2

dn̂′ gσN ′M ′
NM (g, γ )

[(
µNM

µN ′M ′

)3

f N ′(v′)f M ′(v′∗)− f N(v)f M(v∗)

]
. (10)

Here, the gain terms result from microreversibility conditions [3] of the form

(µCD)2g2σAB
CD (g, γ ) = (µAB)2(g+)2σCD

AB (g
+, γ ). (11)

The post-collisional velocities depending on the relative speed after collision g′ = g− for
N = A, B and g′ = g+ for N = C, D are given by

v′ = 1

M
(R−mM ′g′n̂′) v′∗ =

1

M
(R + mN ′g′n̂′). (12)

The conservation of mass, momentum and total energy as well as an H-theorem for the
above sketched model are derived in [7]. Moreover, Maxwellians are found as equilibrium
solutions, and in chemical equilibrium the mass action law is recovered.

3. Semi-continuous kinetic model

In order to discretize the kinetic equations of the previous section, we apply a generalized form
of the procedure introduced in [9]. This strategy has already been adopted for the discretization
of an extended kinetic model [10]. In principle, semi-continuous extended kinetic equations
are derived by discretizing the speed variable in an appropriate manner.

Following these lines, we restrict the range of the particle’s kinetic energies to the interval
Iν = [Em,EM), 0 < Em < EM < ∞. All particles with kinetic energies outside Iν will be
neglected. We introduce an arithmetical sequence of energies

Ei = Em + (i + 1
2 )δ i = 0, 1, . . . , n (13)

with δ = (EM − Em)/(n + 1) being the centres of the subintervals (energy groups)

Ii =
[
Ei − δ

2
, Ei +

δ

2

]
i = 0, 1, . . . , n. (14)

Since we allow for different masses mN , this results in different sets of speed knots

vNi =
√

2

mN

(
Em +

(
i +

1

2

)
δ

)
(15)

for each species. The associated momenta are given by pN
i = mNvNi . Furthermore, we have

to adapt the energy gap �E in such a way that it fits into the discretization scheme. Therefore
we set �E = qδ with q ∈ {1, 2, . . . , 2n− 1}.

This form of discretization has the advantage of a simple expression for the conservation
of energy. In fact, by labelling the energy groups of N,M,N ′,M ′ by i, j, h, k, respectively,
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for elastic collisions, energy conservation is expressed by i + j = h + k. Moreover, also the
reactive collisions imply i + j = h + k ± q.

For the derivation of the collision terms of the semi-continuous model, we discuss the
range of allowed solid angles in a collision process where the speeds are fixed. To this end,
we consider the square of equation (5), i.e.

p2 + p2
∗ + 2pp∗Ω̂ · Ω̂∗ = p′2 + p′2∗ + 2p′p′∗Ω̂

′ · Ω̂′∗. (16)

As a consequence of −1 � Ω̂′ · Ω̂′∗ � 1, the last formula implies the restriction
1

2pp∗
((p′ − p′∗)

2 − p2 − p2
∗) � Ω̂ · Ω̂∗ � 1

2pp∗
((p′ + p′∗)

2 − p2 − p2
∗). (17)

For a fixed Ω̂, the set of all Ω̂∗ satisfying the above condition will be referred to as
D∗(p, p∗, p′, p′∗). Moreover, by differentiation of equation (16) and by following the lines of
the proof of proposition 2.4 in [9], we obtain

∂(Ω̂′, Ω̂′∗)

∂(Ω̂, Ω̂∗)
= ∂(Ω̂′ · Ω̂′∗)

∂(Ω̂ · Ω̂∗)
= pp∗

p′p′∗
. (18)

This important relation is necessary to switch from integration over pre-collisional velocities
to integration over post-collisional velocities in the collision terms [10].

Following [9], we express the unit vector of the post-collisional relative speed n̂′ in an
appropriate frame of reference (R̂, êR, ê⊥) as

n̂′ = cosϕ′R̂ + sin ϕ′(cosϑ êR + sin ϑ ê⊥). (19)

The angles ϕ′ and ϑ denote the usual parameters in polar coordinates. The angle of deflection
α and thus the post-collisional solid angles can be considered as functions of the variables
(v, v∗, v′, Ω̂, Ω̂∗, ϑ). These considerations imply that the surface element dn̂′ appearing in
the collision terms of the continuous equations can be written as

dn̂′ = − d(cosϕ′) dϑ = M2v′

mM ′g′R
dv′ dϑ. (20)

Moreover, in the elastic case we have g′ = g,N ′ = N and M ′ = M .
Now we introduce the set of distribution functions f = {f N

i (Ω̂,x, t) ≡ f N(vNi Ω̂,x, t)},
i = 0, . . . , n, N = A, B, C, D. The kinetic equations for the evolution of f are obtained by
resorting to the discretization procedure of [9] and [10]. In principle, equation (6) is integrated
over each energy group. When appearing as an integrand, any function of kinetic energy (and
thus of speed v) is approximated by a piecewise constant interpolant defined over the above
stated discretization. The resulting equations are of the form

∂f N
i

∂t
+ vNi Ω̂ · ∂f

N
i

∂x
= J N

i +
∑
M

JNM
i (21)

where JNM
i denotes the influence of elastic collisions between speciesN and speciesM on the

evolution of the ith energy group of species N . Similarly, J N
i contains the impact of chemical

reactions on the ith energy group of species N .

3.1. Elastic collisions

In analogy to the formulation given in [9] and [10], the elastic semi-continuous collision term
for the collision N + M � N + M reads

JNM
i [f N, f M ] = δ2

mMmN

n∑
j=0

vMj

n∑
h,k=0

i+j=h+k

∫ 2π

0
dϑ
∫
D∗(mNvNi ,m

MvMj ,mNvNh ,m
MvMk )

dΩ̂∗

×{Ahk
ij (Ω̂ · Ω̂∗, ϑ)}NM [fM

k (Ω̂′∗)f
N
h (Ω̂′)− fM

j (Ω̂∗)f N
i (Ω̂)]. (22)
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In this case, the pre- and post-collisional solid angles are given by

Ω̂ = 1

vNi M
(R−mMgn̂) Ω̂∗ = 1

vMj M
(R + mNgn̂)

Ω̂′ = 1

vNh M
(R−mMgn̂′) Ω̂′∗ =

1

vMk M
(R + mNgn̂′).

(23)

By taking into account the expression for the surface element dn̂′ as given in equation (20),
we find for the kernel

{Ahk
ij (Ω̂ · Ω̂∗, ϑ)}NM = M2

mMR
σNM(g, ϑ). (24)

As a consequence of the microreversibility of the cross section, i.e. σNM(g, γ ) = σMN(g, γ ),
this kernel displays the symmetry

mM{Ahk
ij (Ω̂ · Ω̂∗, ϑ)}NM = mN {Akh

ji (Ω̂∗ · Ω̂, ϑ)}MN (25)

if we exchange the role of N and M . Moreover, by substituting pre-collisional quantities for
post-collisional ones without exchanging N and M , we obtain

{Ahk
ij (Ω̂ · Ω̂∗, ϑ)}NM = {Aij

hk(Ω̂
′ · Ω̂′∗, ϑ)}NM. (26)

As usual, these expressions have to be combined with the Jacobian, i.e. equation (18), where,
of course, for elastic collisions the masses cancel out.

3.2. Reactive collisions

In this subsection, the semi-continuous collision terms for the bimolecular chemical reaction (1)
are presented. For brevity, we consider the general interaction stated in equation (2). The
discretization yields

J N
i [f ] = δ2

mMmN ′

n∑
j=0

vMj

n∑
h,k=0

h+k=i+j∓q

∫ 2π

0
dϑ
∫
D∗(mNvNi ,m

MvMj ,mN ′vN ′h ,mM′vM′k )

dΩ̂∗

×{Ahk
ij (Ω̂ · Ω̂∗, ϑ)}N

[(
µNM

µN ′M ′

)3

fM ′
k (Ω̂′∗)f

N ′
h (Ω̂′)− fM

j (Ω̂∗)f N
i (Ω̂)

]
(27)

where the minus sign in ∓q applies for N = A, B and the plus sign for N = C, D. Pre-
collisional solid angles are the same as for elastic collisions whereas the post-collisional solid
angles are given by

Ω̂′ = 1

vN
′

h M
(R−mM ′g′n̂′) Ω̂′∗ =

1

vM
′

k M
(R + mN ′g′n̂′). (28)

The kernels A are of the form

{Ahk
ij (Ω̂ · Ω̂∗, ϑ)}N = gM2

g′RmM ′ σ
N ′M ′
NM (g, ϑ) (29)

with g′ = g− for N = A, B and g′ = g+ for N = C, D. The microreversibility conditions (11)
and symmetry relations of the continuous kinetic description [7] imply

mM ′ {Ahk
ij (Ω̂ · Ω̂∗, ϑ)}N = mN ′ {Akh

ji (Ω̂∗ · Ω̂, ϑ)}M (30)

as well as

mNmM

mN ′ {Ahk
ij (Ω̂ · Ω̂∗, ϑ)}N = mN ′mM ′

mN
{Aij

hk(Ω̂
′ · Ω̂′∗, ϑ)}N

′
. (31)
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3.3. Macroscopic quantities

In the semi-continuous formulation, the macroscopic quantities of each species N , namely
the particle density, the mean velocity, the momentum flux and the kinetic energy flux, are
respectively given by

nN = δ

mN

n∑
j=0

vNj

∫
S2
f N
j (Ω̂) dΩ̂ (32a)

uN = δ

mNnN

n∑
j=0

(vNj )
2
∫

S2
Ω̂f N

j (Ω̂) dΩ̂ (32b)

K
N = δ

n∑
j=0

(vNj )
3
∫

S2
Ω̂⊗ Ω̂f N

j (Ω̂) dΩ̂ (32c)

QN = δ

2

n∑
j=0

(vNj )
4
∫

S2
Ω̂f N

j (Ω̂) dΩ̂. (32d)

The kinetic energy density of species N is given by the trace kN = ( 1
2 ) tr K

N . The total energy
density e of the gas mixture reads

e =
∑
M

(kM + nMEM). (33)

We can now integrate the semi-continuous model equation (21) over all solid angles Ω̂ and
sum over all energy groups Ij . By using the definitions (32a)–(32d) and summing over all
species, we obtain the macroscopic equations for the gas mixture,

∂

∂t

∑
M

nM +
∂

∂x
·
∑
M

nMuM = 0 (34a)

∂

∂t

∑
M

mMnM +
∂

∂x
·
∑
M

mMnMuM = 0 (34b)

∂

∂t

∑
M

mMnMuM +
∂

∂x
·
∑
M

K
M = 0 (34c)

∂e

∂t
+

∂

∂x
·
∑
M

QM = 0 (34d)

where the sums are extended overM =A, B, C and D. These equations reflect the conservation
of particles, mass, total momentum, and total energy. As an impact of the chemical reactions,
the individual densities nN do not remain constant. Only their sum is preserved.

3.4. Properties of the collision terms

A proof of the conservation equations (34a)–(34d) involves symmetry properties of the
collision terms. Therefore, adopting the notation of [10], for a set of arbitrary functions
ϕ = {ϕNi (Ω̂) ≡ ϕN(vNi Ω̂)}, N = A, B, C, D, i = 0, . . . , n, we introduce

〈ϕN, f N 〉 = δ

mN

n∑
i=0

vNi

∫
S2

dΩ̂ϕNi (Ω̂)f N
i (Ω̂).

The main properties of the semi-continuous collision terms read as follows. First,

〈〈ϕ,J〉〉 ≡
∑
N

〈
ϕN,J N +

∑
M

JNM

〉
(35)
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vanishes for ϕNi = 1; ϕNi = mN ; ϕNi = mNvNi Ω̂ and ϕNi = mN
i (v

N
i )

2/2+EN . This correspond
to the conservation equations stated in (34a)–(34d). Furthermore, we obtain a semi-continuous
form of the space homogeneous H-theorem [7] by setting ϕNi = log(f N

i /(mN)3). It reads

∂H

∂t
≡ 〈〈log f,J〉〉 � 0. (36)

This H-function is zero (collisional equilibrium of the gas mixture) if and only if

f N
i (Ω̂) = AN exp[mN(vNi b · Ω̂− c(vNi )

2)] (37)

with the constants AN, b and c = 1/(2kBT ), where T is the common temperature of the
mixture and kB denotes Boltzmann’s constant. The constants AN are related via

ACAD

AAAB
=
(
mCmD

mAmB

)3

exp

(
−�E
kBT

)
. (38)

By inserting equation (37) with b = 0 into equation (32a), we obtain in mechanical equilibrium

nN = AN

(mN)3/2

{
4πδ

n∑
j=0

√
2Eje−Ej /kBT

}
(39)

which links the particle density nN to the parameter AN . The term in curly brackets is
independent of N . Therefore, in chemical equilibrium we obtain from equation (38)

nCnD

nAnB
=
(
mCmD

mAmB

)3/2

exp

(
−�E
kBT

)
(40)

which is the mass action law [7].
A proof of these relations follows the lines of the proofs in section 4 of [10]. It

applies the classical arguments of kinetic theory [1] by taking advantage of the Jacobian,
i.e. equation (18). The microreversibility conditions, i.e. equations (25) and (26), are of
crucial importance for the conservation properties of the elastic collision operators. More
specifically, they imply 〈1, JNM〉 = 0 as well as 〈ϕN, JNM〉 + 〈ϕM, JMN 〉 = 0 for
ϕNi = mNvNi Ω̂ and ϕNi = mN(vNi )

2/2. Equivalently, equations (30) and (31) fulfill the
same function for the collision operator relevant to chemical reactions. Moreover, they yield
〈1,J A〉 = 〈1,J B〉 = −〈1,J C〉 = −〈1,J D〉.

4. Space homogeneous formulation

In this section, a first treatment of the solid angles Ω̂ appearing in the semi-continuous model
is presented. For simplicity, we confine ourselves to the case of a spatially homogeneous and
isotropic chemically reacting gas mixture. Isotropic scattering will be assumed, which implies
that the kernels A are independent of the angle ϑ . At this level we can study the evolution
of the chemical reaction and the changes in the shape of the distribution functions of the gas
mixture. Some illustrative numerical results are given in the subsequent section.

To derive the space homogeneous equations, we make the ansatz of the so-called P0

approximation of the semi-continuous kinetic equations, i.e.

f N
i (Ω̂) = 1

4πvNi
nNi . (41)

Apart from the multiplicative constant δ/mN , the quantities

nNi = vNi

∫
S2
f N
i (Ω̂) dΩ̂ (42)
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represent the number of particles N , N = A, B, C and D, within the energy group Ii . The
evolution equations for the quantities nNi are obtained by integrating equation (21) with respect
to Ω̂:

dnNi
dt
= QN

i +
∑
M

QNM
i . (43)

This is a set of coupled ordinary differential equations. The integrated elastic collision terms
read

QNM
i = δ2

2mNmM

n∑
j=0

n∑
h,k=0

h+k=i+j

({I ijhk}NMnNh n
M
k − {Ihkij }NMnNi n

M
j ) (44)

with the integrated elastic cross sections given by

{Ihkij }NM = 2π
∫ u1

u0

{Ahk
ij (u)}NM du = 2π

M2

mM

∫ u1

u0

σNM(g)

R
du. (45)

Here,

g(u) =
√
(vA

i )
2 + (vB

j )
2 − 2vA

i v
B
j u and R(u) =

√
(pA

i )
2 + (pB

j )
2 + 2pA

i p
B
j u.

The domain of integration over u = Ω̂ · Ω̂∗, i.e. (u0, u1), coincides with the bound of the
product Ω̂ · Ω̂∗ as given in equation (17). The symmetry and microreversibility conditions,
i.e. equations (25) and (26), imply the relations

mN {I khji }MN = mM{Ihkij }NM and {I ijhk}NM = vNh v
M
k

vNi v
M
j

{Ihkij }NM. (46)

For hard spheres and Maxwell molecules, the elastic kernels I can be calculated analytically.
The integrated collision term describing the influence of reactive interactions on species A is
given by

QA
i =

δ2

2mBmCmD

n∑
j=0

n∑
h,k=0

h+k=i+j−q

Khk
ij

(
µ̃
vA
i v

B
j

vC
h v

D
k

nC
hn

D
k − nA

i n
B
j

)
. (47)

For species B, the above formula applies with the substitutions A↔B, C↔D and Khk
ij → Kkh

ji .
A similar expressions can be found for the terms QC

i and QD
i . In fact,

QC
i =

δ2

2mAmBmD

n∑
j=0

n∑
h,k=0

h+k=i+j+q

Kij

hk

(
nA
h n

B
k − µ̃

vA
h v

B
k

vC
i v

D
j

nC
i n

D
j

)
(48)

and, again, QD
i is obtained by exchanging A↔B, C↔D and Kij

hk → Kji

kh. We have introduced
µ̃ = (µAB/µCD)3. The quantities K are evaluated with the endothermic cross section

Khk
ij = 2πM2

∫ u1

u0

g

g−R
σCD

AB (g) du. (49)

Microreversibility has been exploited to formulate these integrated collision terms.

5. Discussion of results

In this section, some results of the semi-continuous model are presented. They have been
obtained by an implementation of the P0 approximation sketched in the previous section. We
discuss fast exothermic chemical reactions taking place in the mixture of hard-sphere particles
of diameter a = 3.46 Å. The masses of the four species are chosen as mA = 7, mB = 17,
mC = 14 and mD = 10 atomic mass units. The starting point of all calculations is mechanical
(but not chemical) equilibrium of all four species at T = 300 K.
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Figure 1. First few picoseconds of a fast highly exothermic chemical reaction. The left-hand plot
shows the evolution of the temperatures and the right-hand plot the evolution of the densities of the
products A and B. In the considered time interval, the densities of the reactants C and D remain
virtually constant.

5.1. Simple exothermic reaction

We first study a chemical reaction described by the endothermic cross section σ ∼ 1(g −
gAB)g−/g, where 1(·) denotes the unit step function. For this choice, K can be calculated
analytically. In fact, the integral in equation (49) is equivalent to that in (45) for hard spheres.
The magnitude of the reactive cross section is chosen 60 times smaller than that for elastic
interactions. The difference in internal energy is given by �E = 125 meV. For the initial
densities we choose

nA = 0.0416 mol m−3 nB = 0.004 16 mol m−3

nC = 4.16 mol m−3 nD = 41.6 mol m−3.

Figure 1 shows the evolution of macroscopic quantities during the first 80 ps. Due to the
initial rarity of species B, at the beginning the increase of particle number and temperature is
most pronounced for this species. Here, temperature is understood as a measure for the mean
kinetic energy per particle, i.e. T N = 2kN/(3kBn

N). As can be seen in the right-hand plot
of figure 1, the number of B particles is already 100 times greater at t = 80 ps than at the
beginning.

During the considered period of time, the generated particles A and B undergo very
few elastic collisions. Moreover, due to its smaller mass, A gains more kinetic energy from
a reactive collision than B. This implies that the distribution function of A shows extreme
deviations from a Maxwellian. Figure 2 illustrates this behaviour. On the other hand, the
distribution functions of C and D stay virtually constant during the first 100 ps.

As the evolution continues, elastic collisions drive the gas towards mechanical equilibrium.
For species A and B, this is sketched in figure 3. We see that after about 0.5 ns, all distributions
functions have a strong resemblance to a Maxwellian although the generation of particles A
and B has by far not finished yet. The distribution functions of species C and D are illustrated in
figure 4. They only derive little from Maxwellians. The loss of particles C during the chemical
reaction is considerable. On the scale of the left-hand plot of figure 4, the distribution function
almost vanishes in the course of time. On the other hand, we observe only a little loss of
species D as well as a shift of the maximum towards higher energies. This corresponds to the
increasing temperature.

Figure 5 shows the evolution of the temperatures and densities of the various species for
the first few nanoseconds of the evolution. We remark that the temperatures of the reactants C



6090 W Koller

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2 0.25 0.3

di
st

rib
ut

io
n 

/ 1
021

/(
eV

 m
3 )

energy / eV

species A

0

1

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2 0.25 0.3

di
st

rib
ut

io
n 

/ 1
021

/(
eV

 m
3 )

energy / eV

species B

Figure 2. First few picoseconds of a fast highly exothermic chemical reaction. The plots shows the
distribution functions of the products A and B at different instants of time after the ignition of the
reaction. The lowest curves show the distribution at t = 0 whereas the highest curves correspond
to t = 125 ps.
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Figure 3. First 5 ns of a fast highly exothermic chemical reaction. Distribution functions of
particles A and B at different instants of time after the ignition of the reaction. The highest curves
correspond to t = 5 ns, followed by t = 2, 1, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1 and 0 ns, respectively.
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Figure 4. First 5 ns of a fast highly exothermic chemical reaction. Distribution functions of
particles C and D at different instants of time after the ignition of the reaction. The maximum
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order of the curves is inverse to that given in figure 3.
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Figure 5. First few nanoseconds of a fast highly exothermic chemical reaction. The left-hand plot
shows the evolution of temperature and the right-hand plot the evolution of the densities of the
various gas species. For convenience, the density of species D is divided by ten.

and D increase to the common limit of about 387.48 K whereas those of the products A and
B approach the limit from above. After 4 ns, a common temperature is reached and the four
particle densities have almost arrived at constant levels. The final densities are given by

nA = 4.19 mol m−3 nB = 4.16 mol m−3

nC = 0.0142 mol m−3 nD = 37.51 mol m−3.

These values are in excellent agreement with the mass action law that predicts in equilibrium
nAnB/(nCnD) = 33.0, which has to be compared with the actual value of 32.7 obtained
from the numerical results. The discrepancy is less than 1%. It reflects the error the
discretization introduces in the concept of temperature [9]. The temperature as a parameter
of the Maxwellian (37) differs from the temperature as a measure for the mean kinetic energy
per particle.

5.2. Exothermic threshold energy

Very interesting new features appear as soon as we introduce a threshold energy rδ, r ∈ N

for the exothermic direction of the chemical reaction. This can be done by means of the cross
section described in [15], whose endothermic variant reads

σCD
AB (g) ∼

1

g−

(
1− g2

AB + g2
x

g2

)
1(g2 − (g2

AB + g2
x)). (50)

The speed gx is given by g2
x = 2rδ/µAB. Due to this complicated structure, the integrals for

the P0 approximation are evaluated numerically. Since microreversibility has already been
plugged into the P0 equations, high accuracy is not needed because conservation laws are
automatically satisfied.

The dynamics of the reaction depends critically on the threshold energy. According to its
magnitude, we observe a more or less rapid ignition of the reaction.

Four cases are illustrated in figure 6, namely the case of a low, a medium, a high and a
very high threshold. For the calculations, the distribution function is resolved using 76 energy
groups. Measured in units of δ, the energy gap of the chemical reaction is given by q = 50 and
the threshold by r = 25. The four different values for the threshold are obtained by modifying
the width δ of the energy groups. We choose δ = 6.25, 8.75, 11.25 and 12.5 meV, respectively.



6092 W Koller

300

400

500

600

700

800

900

1000

1100

1200

0 20 40 60 80 100 120

te
m

pe
ra

tu
re

 / 
K

time / ns

TA
TB
TC
TD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100 120

de
ns

ity
 / 

m
ol

/m
3

time / ns

nA
nB
nC
nD

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

te
m

pe
ra

tu
re

 / 
K

time / ns

TA
TB
TC
TD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250 300 350

de
ns

ity
 / 

m
ol

/m
3

time / ns

nA
nB
nC
nD

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700

te
m

pe
ra

tu
re

 / 
K

time / ns

TA
TB
TC
TD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500 600 700

de
ns

ity
 / 

m
ol

/m
3

time / ns

nA
nB
nC
nD

300

600

900

1200

1500

1800

2100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

te
m

pe
ra

tu
re

 / 
K

time / µs

TA
TB
TC
TD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

de
ns

ity
 / 

m
ol

/m
3

time / µs

nA
nB
nC
nD

Figure 6. Evolution of temperatures and densities for a low (top), medium, high and very high
(bottom) exothermic threshold energy.
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The initial densities are given by

nA = 0.0416 mol m−3 nB = 0.004 16 mol m−3

nC = 4.16 mol m−3 nD = 3.33 mol m−3.

For a low threshold energy, we first observe that the densities do not decay exponentially to
their final values as in the case without exothermic threshold, cf figure 5. After an initial phase
of about 20 ns where the temperatures of the products A and B go through a local maximum,
they raise in concert with the temperatures of the reactants C and D. This accelerates the
reaction. The pronounced peak of T B is a consequence of the low initial density of B. Due
to the conversion of internal energy to kinetic energy, the temperatures of A and B are always
higher than those of C and D.

When the threshold is increased, the ignition becomes more and more delayed. At the
beginning of the simulations, the gas mixture is cold. Consequently, few particles have
sufficient kinetic energy to undergo a chemical reaction. These few reactions, however,
constantly heat the gas mixture. An interesting aspect is that, at the beginning, the mean
kinetic energy of the reactants decreases slightly (not visible in the plots). This is due to the
fact that only the very energetic particles C and D react, being transformed to A and B. As
soon as the temperature of C and D is high enough, ignition takes place followed by a rapidly
increasing temperature. Obviously, for the highest value of the exothermic threshold energy,
the ignition is delayed for the longest time.

6. Conclusion

In this paper, a semi-continuous extended kinetic model for a chemically reacting gas mixture is
established. Four different species of gas undergoing elastic collisions as well as bimolecular
chemical reactions are taken into account. General mass ratios of the involved species are
allowed for.

The semi-continuous model reflects the major properties (H-theorem and conservation
laws) of the full continuous kinetic description. Moreover, a mass action law governing the
densities of the four species in chemical equilibrium is recovered.

The model is applied to calculate numerically the evolution of fast exothermic chemical
reactions. At the level of the distribution functions, different degrees of deviation from
Maxwellians due to fast reactive collisional processes are observed. In the studied case,
the deviations are most obvious for the dominant species of the products.

A comparison of this model to a BGK model for chemical reactions is matter of current
research activities. Spatially dependent simulations are scheduled as future work.
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